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J. Phys. A: Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

Two-dimensional bonded lattice fluids 
I. Interstitial model 

G. M. BELL and D. A. LAVIS 
Department of Mathematics, Chelsea College of Science and Technology, 
Manresa Road, London SW3, England 
MS.  received 17th October 1969, in revised fo rm 26th January 1970 

Abstract. The density, pressure and temperature state surface is studied for 
a ‘bonded’ fluid on a plane triangular lattice. Bonds are formed between 
nearest-neighbour molecules on a honeycomb sublattice comprising Q of the 
total number of sites, while molecules on the remaining sites, which are re- 
garded as interstitial, do not participate in bonding. There is competition 
between a low-energy ‘open structure’ with all interstitial sites empty and each 
molecule participating in three bonds, and a ‘close-packed structure’ with all 
sites occupied. Calculations were made using a first-order statistical approxi- 
mation based on a triangular group of sites. Separation between liquid and 
vapour phases occurs below a critical pressure p , .  Another significant value of 
the pressure in this model is termed p, which is greater than p ,  and such that 
curves of density against temperature at constant pressure between p, and p ,  
display maxima. For a suitable ratio of the non-bonding energy of a nearest- 
neighbour pair to the energy of bond formation there are density maxima in 
the liquid as well as the supercritical state, as in fluid water. If the interaction 
energy of an unbonded nearest-neighbour pair of molecules is zero the pro- 
perties of the model can be related to those of an Ising ferromagnet on a honey- 
comb sublattice and accurate values deduced for the critical density, pressure 
and temperature. 

1, Introduction 
The  accepted explanation for the anomalous behaviour of water density at normal 

pressures is that the usual decrease in density due to the increase in amplitude of 
thermal vibrations with temperature is counteracted by closer packing due to break- 
down of tetrahedral coordination (see, for instance, Eisenberg and Kauzmann 1969) s 
However, the construction and treatment of an adequate model for water, in which this 
behaviour together with other properties could be deduced from first principles by 
the methods of statistical mechanics, presents a formidable task. The  aim of the pre- 
sent series of papers is to examine simple models of fluids with bonding properties 
which imply that open configurations are in competition with closer-packed con- 
figurations of higher energy. The  models are tractable enough for the behaviour of 
the density as a function of temperature and pressure to be deduced to a reasonable 
approximation from their basic postulates. 

The  preceding paper (Bell 1969) treated one-dimensional models in which the 
breaking of a bond allowed neighbouring molecules to approach more closely. The  
present paper deals with a two-dimensional bonded lattice fluid on a plane triangular 
(hexagonal) lattice. One third of the sites are ‘interstitial’ and molecules on these sites 
cannot participate in the framework of bonds. The extension to two dimensions 
permits the abandonment of the one-dimensional postulate that a molecule’s bonded 
neighbours must remain further away from it than its unbonded neighbours. The  
existence of the open structure is now dependent on rules restricting the angles 
between the directions from a molecule to its bonded neighbours. Furthermore, the 
two-dimensional lattice fluid displays a separation into ‘liquid’ and ‘vapour’ phases 
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428 G. M. Bell and D. A. Lavis 

so that it is possible to study the interaction between phase separation and anomalous 
density behaviour. A (two-dimensional) pressure p ,  is found above which the density 
decreases monotonically with temperature but below which anomalous behaviour 
occurs. As with real water, p ,  is considerably greater than the critical pressure p ,  for 
liquid-vapour phase separation. Thus, above p ,  there is a range of pressures in 
which the density passes through a maximum as the temperature increases. For a 
suitable value of ratio of the non-bonding nearest-neighbour energy to the energy of 
formation of a bond, the density maximum is also found in the liquid phase below p , .  

The  present treatment is confined to lattice fluids although in one dimension 
it was shown that the anomalous behaviour of a continuous fluid with a parabolic 
potential well was similar to that of a lattice model. In  one dimension an exact treat- 
ment was possible but in the present paper we make use of a first-order statistical 
approximation based on triangular groups of sites on the lattice. Exact values for the 
critical pressure, density and temperature are given in one case. 

We conclude this section with some remarks on the relation of this work to ex- 
isting theories of fluid water. Those developed up to 1967 have been classified by 
Eisenberg and Kauzmann (1969) into mixture models where the water molecules are 
distinguished by their state of association, interstitial models where molecules are 
displaced from a hydrogen-bonded framework, and models where the hydrogen 
bonds may be bent or distorted. From this point of view the model of the present 
paper is a very simple interstitial one. Levine and Perram (1968) have recently used 
methods from the theory of cooperative phenomena to examine the states of association 
of molecules on a lattice and have criticized the statistical basis of earlier theories. 
They give a brief sketch of a lattice liquid theory with some vacant lattice sites but 
do not introduce the restrictions on bonding direction which give rise to the 'open 
structure' of our present model and lead to its most interesting properties. 

2. The interstitial bonded fluid model and states at absolute zero 
We assume that each molecule in the two-dimensional assembly on the triangular 

lattice can participate in at most three bonds, which are at angles of 120" to each other. 
The  energy of formation of each bond is -w(w > 0) so that, while an unbonded 
nearest-neighbour pair of molecules has an energy - € ( E  > 0), a bonded pair has an 
energy of - ( E + w ) .  The triangular lattice is divided into a honeycomb sublattice 
(sublattice a) and interstitial sites (sublattice b) as shown in figure 1 where aa and ab 

Figure 1. The honeycomb (a) and interstitial (b) sublattices. 
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nearest-neighbour site links are respectively represented by full and by broken seg- 
ments. It can be seen that each a-site has three a- and three b-sites as nearest neigh- 
bours, while each b-site has six nearest-neighbour a-sites. It is supposed that the 
molecules on the a-sites are oriented in such a way that any aa nearest-neighbour 
pair of molecules is bonded but no ab pair is bonded. With the pair energies stated 
above, the configurational energy E ,  of the assembly is then given by 

E,= -N " E  - N,,(")w (2.1) 
where N,, is the total number of nearest-neighbour pairs on the triangular lattice 
and N,m(a) is the number on the honeycomb sublattice a. With these postulates no 
molecule can be bonded except on an a-site and then only to molecules on the neigh- 
bouring a-sites so that the maximum number of bonds from any one molecule is 
three at angles of 120" to each other. The  rule stated at the beginning of the section 
is thus satisfied. 

Sites of both sublattices can be either vacant or occupied by molecules. With 
the postulates made above, the configuration in which each molecule participates in 
the maximum number of bonds is one with all a-sites occupied and all b-sites vacant. 
Thus M molecules will occupy the M sites of a honeycomb sublattice of a triangular 
lattice of j M  sites with the remaining &M sites vacant. This will be termed the open 
structure and the pattern of bonds is that made by the solid segments in figure 1. 

The  open structure can break down locally owing to movement of molecules from 
a-sites to b-(interstitial) sites but our postulates exclude the possibility of cooperative 
reorientation of molecules to form bonds between ab site pairs. (A model in which this 
is not excluded will be considered in the next paper of this series). The  total number 
of triangular lattice sites will be denoted by N so that there are +N a-sites and +N 
b-sites. If there are M molecules of which M a  and Mb are on a- and b-sites respec- 
tively then we can define an overall number density p and densities pa and pb on the 
a- and b-sublattices respectively by 

Mb 
pb = -. M Ma 

= " g1v 

I n  the perfect open 
sities are connected 

As is usual for a 

structure p = 8, pa = 1 and pb = 0. In  general the three den- 
by the relation 

lattice fluid it will be assumed that the Hamiltonian is separable 
into terms corresponding to the internal degrees of freedom of the molecules and a 
configurational term depending on the arrangement of the molecules on the N 
sites and that these terms are independent. Each term in the assembly partition 
function thus contains a factor {$( 7'))" where $( 7') is the partition function over the 
internal degrees of freedom of one molecule. It would be possible, without increasing 
the difficulty of the analysis, to assume that, for each bond formed by a given molecule, 
$(T)  is modified by a factor which we could call exp(-S(T)}, following Levine and 
Perram (1968). Then a term e~p{-2N,,(~) S(2'))  would appear in the assembly 
partition function having the effect of replacing the constant w by the function of 
temperature (w + 2S( 7')). Any equilibrium relation would remain valid provided this 



43 0 G. M. Bell and D. A. Lavis 

substitution was made. However, as we lack criteria to determine S( T )  for the present 
model and as we wish to keep the number of parameters as small as possible, we 
shall put S(T) = 0. 

At low temperatures the alternative equilibrium state to the open structure dis- 
cussed above is the ‘close-packed’ structure where all sites of the triangular lattice 
are occupied so that #iVr molecules lie on a-sites and participate in bonding while 
4M lie on b-sites and are unbonded. If the configurational energies of the open and 
close-packed structures are respectively denoted by and Ec,c then for an assembly 
of M molecules 

Ec,, = -#M(€+w)  
Ec,c = -M(€+w)-2M€ =z - M ( 3 € - t w ) .  (2.4) 

However, if the pressure is specified, the most stable state at absolute zero is that 
of least configurational enthalpy (E,+pA) where A is the area occupied by the 
assembly a n d p  the two-dimensional pressure. We shall assume that the area per 
lattice site is determined only the forces between two molecules and is independent 
of temperature and pressure so that A = Nu, where a, is constant. Then since in 
the open and close-packed structures we have N = and AT = M respectively, 
we find that for an assembly of molecules the corresponding configurational 
enthalpies are 

= -#&‘((E + w )  + QMpa, 

= - M ( 3 ~ + w ) + M p a , .  (2.5) 

AW = ~ - 3 3 ~ ’  P o  = W a . 3  (2.6) 

(2.7) 

If we define an energy difference h w  and a pressure p ,  by 

then the difference between the enthalpies of the two structures is given by 

Hc,c-Hc, ,  = $-M(Aw-pa,) = $n/r.,(pC-p). 
It is clear that the condition for the open structure to be stable relative to the 

close-packed structures at absolute zero is p < p,. If the energy of bond formation 
is not large enough relative to the interaction energy of unbounded neighbours then 
p ,  < 0 and the close-packed structure is stable for all pressures at absolute zero. 

3. The first-order triangle approximation 
In  the generalized first-order (quasi-chemical or Bethe) approximation a basic 

group of sites is chosen and the system is regarded as an assembly of such groups 
occupied in various ways (Guggenheim and McGlashan 1951). In  the best-known 
form of the approximation the group is simply a nearest-neighbour pair of sites but 
we shall choose a triangle of two a-sites and one b-site, giving the correct ratio of 
‘honeycomb’ to ‘interstitial’ sites. Where there are second-neighbour interaction 
energies it is important that rne ratio of first- to second-neighbour site pairs in the 
group should be equal to that in the whole lattice (Bell 1953). In  the present work 
only first-neighbour interaction energies are considered but these are different for aa and 
ab pairs so that it is desirable that the ratio of aa to ab site pairs in the group should 
be equal to that in the lattice. This criterion is satisfied in the triangle group of sites 
with one aa pair and two ab pairs. Using N triangles to give the correct total number 
of 3N nearest-neighbour site pairs, the first-order approximation, in the Guggenheim 
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and McGlashan (195 1) formulation, consists of writing for the configuration number 
Q the relation 

I n Q  = l n R o - N ~ O k l n O k  (3 .1)  
k 

where each 6k is the probability of one of the types of occupation of the triangle. 
There are eight of the latter but two pairs obviouslv have equal probability so that six 
distinct 8, are listed in table 1, The correlation between the triangles is to some extent 

Table 1. The probabilities of the configurations on the triangular group 
of sites 

(The two lower sites are a-sites and the upper onc a b-site. A bond is denoted 
by a horizontal bar) 

Probability Configurations 

m m 
01 or 

m h h m  

h h 

m h h m  
02 or 

m 

m - m  
0 3  

h 

m - m  
e4 

m 

h h 
o5 

h 

h h  
o s  

allowed for by the factor Qo which is such as to give s2 its correct value when the dis- 
tribution in each sublattice is random. Hence 

In no = 2N[+(pa In pa + ( 1 - pa) In (1 - pa)) + Q ( p b  In pb  + (1 -pb) In (1 - p,,))]. (3 2) 
The probabilities el, ..., 6, are not independent. Since the probabilities for all 

types of occupation of the triangle must add up to unity, 

20,+20,+0,+0,+0,+0, = I .  (3 .3)  
From table 1 we can write an expression for the overall number density p in terms of 
the e,<: 

401 + 20, + 30,  + 20, + 6, = 3 p  (3 *4) 
and, since we regard p as a thermodynamic variable, (3.4) constitutes a second rela- 
tion between the 8,. We choose 81, 02, 0, and 64 as independent order variables and 
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then from (3.3) and (3.4) the dependent variables O5 and Os are given by 

65 = 3p - 46, - 20, - 36, - 26, 
6 ,  = 1-3p+2d,+2d3+d,. 

In  deriving the equilibrium conditions the sublattice number densities pa and pb 
appearing in In .R, will be regarded as dependent variables. From table 1 and equa- 
tion (2.3) they are given by 

Pa = e , + ~ 2 + 8 3 + o , ,  P b  = 3P-2pa. (3 -7)  
Again from table 1, the configurational energy E,, given by equation (2.1) may be 
expressed as 

E ,  = - N { w ( ~ ,  + 0,) +e(2dl + 38, + 04)). (3 4 
We define a configurational Helmholtz free energy F ,  for the assembly and a 

configurational free energy f, per lattice site by 

F ,  = .Vf,(T, p, d l ,  d 2 ,  03,  0,) = Ec-KTln Q. (3.9) 
A procedure equivalent to finding the maximum term in the assembly partition func- 
tion is to minimize F ,  with respect to the independent order variables d,, d2, 6 ,  and 
6, at fixed values of the temperature T ,  area A and number of molecules ,W. The 
two latter thermodynamic variables are specified by N and p since the area a, per 
lattice site is a constant. For brevity we introduce the notation 

and it is also convenient to define 

(3.10) 

(3.11) 

The four equilibrium relations obtained by equating to zero the derivatives of f c  with 
respect to d,, d,, d 3  and d, at constant T and p can then be expressed in the form 

8, 0, s 

0 5  Y4’ 0 5  
- = s  _ -  - - 

(3.12) 

We now require expressions for certain thermodynamic functions. The con- 
figurational chemical potential g, is given, using the first relation of (2.3), by 

and the two-dimensional pressure p by 

(3.13) 
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which yields 

(3.14) 

(3.15) 

verifying that the present formulation satisfies the thermodynamic relation that chemi- 
cal potential in a one-component system is equal to Gibbs free energy per molecule. 
Since we equate to zero the derivatives of f c  with respect to the four independent 
order variables 01, 02, O 3  and O4 the latter can be held constant when the differentiation 
in (3.13) is performed so that 

g c =  - k T  2ln-  f b  + 3  ln$) .  ( l - p b  
(3.16) 

After simplifying .fc with the help of the equilibrium relations (3.12) we have, 
from (3.14), 

p a ,  = kT(4 l n ( l - p a ) + ~ l n ( l - p b ) - l n 6 , - I n ~ ) .  (3.17) 

With the aid of (3.3), the last definition of (3.11) and the equilibrium relations 
(3.12) we obtain O5 as a function of $ and s, and then from (3.4) we can also express p 
in terms of these variables. Since s is given in terms of pa and p by the definition (3.10) 
we now have, at any temperature, the pressure p and the density p expressed im- 
plicitly in terms of the two parameters pa and 4. Another relation between these 
parameters is necessary and it proves convenient to use (3.3), (3.4) and (3.7) together 
with the equilibrium relations (3.12) to write 

(3.18) 

This shows at once that fory  = 1 (i.e. E = 0 or T = 03) 4 = (1 -pb)/pb. Otherwise, 
y < 1 and the right-hand side of (3.18) is a positive monotonically decreasing function 
of 4 so that (3.18) yields a unique positive value of $ at a given temperature and given 
values of p and pa. Points on the (p ,  p ,  T )  state surface may now be obtained numeri- 
cally by adjusting pa until the equation for p is satisfied and then using equation (3.17) 
for the pressure. Results are discussed in $ 6  below. 

4. Low-temperature behaviour 
Important properties of the model can be derived from the equilibrium relations 

at small T (i.e. when y, x and exp( -pa,/kT) are all much less than unity). If the 
configuration tends towards the open structure then, from table 1, 6, + 1 as T --f 0 
and, if towards the close-packed structure, then O 3  --f 1. We now consider the behaviour 
of the interstitial sublattice number density pb which, from (3.4), (3.7), (3.11) and 
(3.12) can be expressed as 

d,+d, 6,+0, 6,+0, 
p b  = 20,+63+0, = 2- + ___ + --. 

l+y+  1+y2$ I + $  
We now suppose that the triangle configuration obtainable from the dominant one 
without breaking a bond is the next most probable. Hence if 6, is nearly 1 the occupa- 
tion probability next in order of magnitude is d3 and vice-versa. This is physically 
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reasonable and may be verified by treating the open and close-packed structures 
separately. I t  may then be deduced from (4.1) that, near T = 0, 

Also, using two of the equilibrium relations (3.12), 

(4.3) 

Substitution of (4.2) and (4.3) into the pressure relation (3.17) yields 

It follows that, forp  > p,, pb .+ 1 as T --f 0 (close-packed structure) while, for p < p,, 
Pb ->O as T - t o  (open structure) in accordance with the conclusions of 5 2 above. 
If p = p,, exactly, then from (4.4) the limiting value of pb at absolute zero is given 
by the cubic 

( 1 - P b ) 3 - P I ) 2  = 0 

which has only one real root, pb = 0.43. Since pa = 1 in both the open and close- 
packed structures it follows from (2.3) that the overall number density p + 0.81 as 
T+O whenp = p,. 

We now consider the open structure separately. When p < p ,  it follows from 
(4,1), (4.2) and (4.4) that y2+ -+ CO as T --f 0 and we may write the asymptotic relation 

(4.5) 

The limiting behaviour of (1  - p a )  (or s) can be obtained from the relation 

I - ~ ,  = e,+e,+e,+e,. (4.6) 
It is found that 8, is next in order of magnitude after 0, and O 3  and that 

e, I - ~ ,  - $3/2,,,3/2 (4.7) 

Equation (2.3) can be written in the form 

p = Q+' 3 P b - $ ( l - P a )  (4.8) 
and, from (4.5) and (4.7), pb is of higher order of magnitude than (1 -pa ) .  Hence p 
increases with temperature near T = 0 and thus. if p ,  < p < p ,  (p, being the critical 
pressure), there must be at least one maximum in the curve of density against tempera- 
ture at this value of p .  If p < p ,  the question of whether such a maximum occurs 
before separation into conjugate phases must be resolved by calculation. 

For p > p,, the configuration tends to the close-packed structure, yz$  -+ 0 with I' 
and we have the asymptotic relation 
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For (P-p,)ao > E it is found that 
that 

is next in order of magnitude after 8, and 8, and 

o1 - l -p ,  - exp(--F) - Pa, zzy3. (4.10) 

For positive (p-p,)a, < E ,  on the other hand, it is found that O2 is next in order of 
magnitude after 8, and 6, and that 

O2 - 1-pa  N exp (-;Po) -- xy3. (4.11) 

These relations mean that, while for p < p ,  and (p-po)ao > E defects in the a- and 
b-sublattices are uncorrelated at low T,  in the case 0 < (p-p,)a, < E a defect 
(vacancy) on sublattice a is likely to occur next to a defect (vacancy) on sublattice b. 

5. Model with zero interaction energy between unbonded neighbours 
If E = 0 the states of the interstitial bonded fluid can be related to those of the 

Ising ferromagnet on the honeycomb lattice. Although it will be seen in 4 6 
that a non-zero value of E gives results which are physically of more significance, it is 
of interest to compare critical values derived from the triangle approximation for 
E = 0 with accurate values obtained by comparison with the Ising model. 

With E = 0 there is no energy of interaction between interstitial and honeycomb 
molecules so that the distribution on sublattice a is random and uncorrelated with 
that on sublattice b. Hence we may write for the configurational Helmholtz free 
energy per site 

wherefC(*) is the free energy per site for the assembly on sublattice a, regarded as a 
function of the number density pa. We show in the Appendix that 

.fc = + k T ( ~ b l n p , + ( l - ~ , )  ln(l-p,)> +3fc("Ypa) ( 5 . 1 )  

fo(")(pa) = f w  - &pa, +fc*(Pa) ( 5 4  
wherefc*(pa) is the free energy per lattice site for a zero-field Ising ferromagnet on 
the honeycomb lattice with a fraction pa of the spins pointing in one direction and the 
Ising interaction constant J equal to t w .  Substituting (5.2) into (5.1) we have 

fc = @T{pb Inpb + (1 -Pb)  In (1 -Pb)}+&-wpa + 9fc*(Pa)* (5.3) 
Applying equation (2.3) it follows from (5.3) that the equilibrium relation for 

transfer of molecules between the sublattices is 

(5.4) 

Applying equation (3.13) to the form of fc given by (5.3)) where the only dependence 
on the overall density p is through pb in the first term on the right-hand side, we find 
that the chemical potential is 

8 f c  Pb  

aP -Pb 
go = - = kT In---. (5.5) 

Substituting (5.3)) (5.5) and (5.4) into equation (3.14) for the pressure we derive 

A8 
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The zero-field Ising model satisfies an equilibrium condition for reversal of dipole 
direction which can be written 

Comparing this relation with (5.4) and noting that pb is given in terms of pa by 
(2.3) we see that (5.4) corresponds to an equilibrium condition for an Ising model in 
an applied field depending on pa. Although exact closed-form solutions exist for 
the honeycomb lattice zero-field Ising model they are not available when the applied 
field differs from zero and we must still resort to approximation methods. However, 
we shall now show that critical properties in the interstitial bonded fluid model can 
be related to the zero-field Ising model. The  Ising free energyf,* satisfies the sym- 
metry relation 

fc*(Pa) = fc*(1 -pa)- (5.8) 
Hence, below the Curie temperature T,, the Ising model equilibrium condition (5.7) 
is satisfied at pa = 4 and a pair of points pa = i(l, I Iml), m being the relative magnet- 
ization. Where (5.7) is satisfied the bonded fluid equilibrium relation (5.4) is also 
satisfied if 

irrespective of the value of pa given by (5.7). Hence from (5 .6)pa0 has the same value 
for the bonded fluid phases where pa = +(l i Imi) and pb is given by (5.9). Again 
from (5.5) and (5.9) the chemical potential g, has the same value -+w in the two 
phases, which are thus in equilibrium. The two conjugate bonded fluid phases 
become identical when m = 0 (pa = +) so the Curie temperature T ,  of the honey- 
comb lattice Ising model is also the critical temperature for the bonded fluid on the 
triangular lattice with E = 0. From (2.3) and (5.9) the critical density p c  is given by 

(5.10) 

while from (5.6), (5.7) and (5.9) the critical pressure p ,  is given by 

(pa = $, T = T,). (5.11) 

Accurate values for kTJw = kT,/4J and pca,/w were derived from honeycomb 
Ising model critical values given by Domb (1960-appendix 11, 3) identifying the 
critical value of fc* with Domb's - kT, In A,. The accurate critical values are com- 
pared with those derived from the zeroth and first-order approximations in table 2. 

Table 2. Accurate and approximate critical values for E = 0 

Zeroth First Accurate 
order order 

kT& 0.750 0.455 0.380 
P c  0.373 0.345 0,340 
pca,/w 0.1282 0.0313 0.0119 
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It should be noted that the value of pressure p ,  (separating the regions of open and 
closed-packed structure at T = 0) derived in $ 2  is also accurate so that the last entry 
in the last column of table 2 gives the accurate value of pc/po  for the case E = 0. 
The  properties of the bonded fluid differ from those of the ‘lattice gas’ on the honey- 
comb lattice alone. For instance, the conjugate phase densities of the latter are 

(5.10). Even for the case E = 0 considered here, the bonded fluid density displays 
anomalous properties not shown by standard lattice gases, as can be seen both from 
the considerations of $ 2 and $ 4 above and from the first-order results in figures 2 
and 5 be lo^. 

2(1 1 h Iml) and the critical density is 4 as opposed to the bonded fluid value given by 

6. Numerical results and discussion 
Calculations have been performed using the first-order triangle approximation 

discussed in $ 3. With the bonding energy w absorbed into a reduced temperature 
kT/w the only arbitrary parameter is the ratio E/W which must lie in the range 0 to Q 
for the open structure to exist at low temperatures and pressures. For calculation we 
have chosen the two values 0 and 2 for E / W .  Isobars (curves of T against p at constant 
p )  are plotted on figure 2 for E / W  = 0 and on figure 3 for E/w = $. For subcritical 
pressures ( p  < p,) the thermodynamically unstable portions of the curves are shown as 
broken while the straight ‘tie-lines’ connect conjugate liquid (high density) and vapour 
(low density) phases. For a given subcritical pressure the temperature at which 

I 

0 0 2 0345 0.4 0 6  I 
P 

Figure 2. Temperature-density curves at constant pressure for E/W = 0, 
first-order triangle approximation. Each curve is labelled with the value of 

pa,/w. (poao/w = 1 where E/W = 0). 
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liquid and vapour phases are in equilibrium can be obtained by plotting the chemical 
potential go against temperature and a curve of this type is shown in figure 4. The  
closed loop corresponds to thermodynamically unstable states while the double point 
gives the temperature of phase equilibrium at the given pressure. The phenomenon 

_ _ _ - - - - _  
11300 

,' 

I I 

0.2 0.4 0.6 0.8 I 
P 

Figure 3. Temperature-density curves at constant pressure for c/w = &, 
first-order triangle approximation. Each curve is labelled with the value of 

pa&. (poa,/zc = $where </w = ;5). 

of density increase with temperature at constant pressure and the appearance of a 
density maximum is easily seen on each isobar in the range p ,  < p < p ,  on both 
figure 2 (EIW = 0) and figure 3 (c/w = i). However, at subcritical pressures p < p ,  
a density maximum appears (in the liquid state) only for E/w = t. Isobars were also 
calculated for the zeroth-order approximation and are qualitatively similar to those 
shown in figures 2 and 3.  

The fluid state surface is more often represented by isotherms than by isobars. 
For the present model, in the case E/W = 0, isotherms (curves of pressure against 
density at constant temperature) are plotted in figure 5. The  form of the curves in 
the phase-separation region, with thermodynamically unstable parts represented by 
broken curves, is familiar for approximate theories of fluids. The  characteristic 
properties of the state surface of the present model are shown by the appearance of 
density maxima on the isobars. This implies that pairs of points exist corresponding 
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to the same density and pressure but different temperatures so that isotherms in the 
lower temperature range intersect. This behaviour is displayed by the isotherms in 
the right-hand part of figure 5 .  

In  water there are density maxima on isobars in the liquid phase below the critical 
point as well as in the supercritical region. In  our model this occurs for e/w = 4 but 

I 1 :  I I 

0.25 0 3 0.3215 0.35 0.4 
kTlw 

Figure 4. Chemical potential ( -3gc/w)-temperature curve for E/W = 0, 
,pa,/w = 1 /300, first-order triangle approximation. 

P 

Figure 5 .  Pressure-density curves at constant temperature for e/w = 0, first- 
order triangle approximation. Each curve is labelled with thevalue of kT/w.  Note 
that the scale of the diagram is changed for p >0.65 to display intersecting 

isotherms. 
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not for EIW = 0, which is physically reasonable since in water the non-bonding inter- 
actions comprehended in our parameter E are of considerable importance. Anomalous 
density behaviour in water ceases at a pressure between 1500 and 2000 atmospheres 
(Bridgman 1949, Eisenberg and Kauzmann 1969) while the critical pressure is 218.3 
atmospheres so that the ratio po/pc is between 7 and 9. For the present model with 
E/W = 0 the accurate value of po/pc is 84 while with the first-order (triangle) approxi- 
mationp,/p, is 32. On the other hand with E/W = it can be seen from figure 3 that 
the first-order (triangle) approximation gives a value of po/p, between 14z and z4E 
while the accurate value would presumably be rather higher. I t  thus again appears 
that the model's behaviour is closer to that of water with E / W  = than with E / W  = 0. 
However, it should be remarked that the anomalous behaviour of water is, as would 
indeed be expected, more complicated than that of the model, since at 1500 atmos- 
pheres there is a density minimum as well as a maximum in the isobar. 

From a theoretical point of view the chief defect in the present model is that, 
as well as the long-range order implicitly imposed by using a triangular lattice of sites 
for the molecules, there is an additional degree of 'sublattice' long-range order result- 
ing from the assumed differences between molecular pair interactions when both the 
members are on honeycomb lattice sites and when one member is on an interstitial 
site. This defect will be removed in the next paper of the series where there is no 
distinction between the sites of the triangular lattice and the open structure appears 
as a form of short-range order. However, the present paper has demonstrated that a 
very simple interstitial model with restricted directional bonding properties can 
show density and critical behaviour qualitatively similar to that of fluid water. 
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Appendix 
We relate the properties of the interstitial bonded fluid model for the case E = 0, 

when the distributions on sublattices a and b are uncorrelated, with those of the Ising 
model on the honeycomb lattice. If Ma denotes the number of molecules on the 
3jV sites of sublattice a and N,,("), "h'"), Nhh(") respectively denote the numbers 
of molecule-molecule, molecule-hole and hole-hole nearest-neighbour pairs on 
sublattice a then (disregarding boundary effects) 

21Z7"(a)+Nmh(a) = 3'44" = 3($1V)pa = 2Npa 
2h 'hh (a ) f~ \Tmh(a )  = 3(31y-M&) = 21\-(1 -pa).  

(-41) 
(A2) 

If denotes the number of configurations on sublattice a for given values of M a  
and Nmm(&) then, using (Al)  and (A2), the free energy of the assembly on sublattice 
a is 

$ Nf,(&) = - k T In Q(a) - ~l\',,(~) 

= $Arw - Nwpa - k T In + $ W N , ~ ( ~ )  - $w(N,,(") + N,,'")). (A3) 

Now the configurational free energy of an Ising ferromagnet on a honeycomb 
lattice of $ITV sites, identical with sublattice a, is 

$Nf,* = - KT In + l -wmh(a)  - J(Kmm(a) + NhhCa)) (A4) 
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where the labels ‘m’ and ‘h’ now denote the ‘up’ and ‘down’ positions of an Ising 
dipole and J is the Ising interaction constant (see, for instance, Domb 1960). Com- 
paring (A3) and (A4) and identifying J and aw, equation (5.2) follows. 
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